Clean the DataSet.
- 1. Dealing with Missing Data
- 2. Dealing with Duplicates
- 3. Outlier Detection
- 4. Encode Categorical Features
- 5. Transformation
Steps to implement :
- Open Jupyter Notebook.
- Declare a dummy dataframe using pandas.
- Then implement the below methods.
1. Methods to check missing values

2. Removing Missing Data

3. Filling Missing Data

4. Dealing with Duplicates

5. Outlier Detection & Handling

6. Encoding Categorical Features

7. Feature Transformation

8.Detecting and Handling Infinite Values

When to Remove vs. Fill Missing Data?

Useful Resources :
-
Python Playlist
-
AI Career Path in 2025
-
Machine Learning
-
Learn Statistic
-
Learn Data Visualization
-
Data Analyst Interview Preparation Guide