The Ultimate Cheat Sheet for Handling Missing Data in Python

Clean the DataSet.
  • 1. Dealing with Missing Data
  • 2. Dealing with Duplicates
  • 3. Outlier Detection
  • 4. Encode Categorical Features
  • 5. Transformation
Steps to implement :
  1. Open Jupyter Notebook.
  2. Declare a dummy dataframe using pandas.
  3. Then implement the below methods.
1. Methods to check missing values
2. Removing Missing Data
missing data
3. Filling Missing Data
filling missing values
4. Dealing with Duplicates
dealing with duplicates
5. Outlier Detection & Handling
encoding
6. Encoding Categorical Features
encoding
7. Feature Transformation
feature transformation
8.Detecting and Handling Infinite Values
missing values
When to Remove vs. Fill Missing Data?
Useful Resources :
  1. Python Playlist 
  2. AI Career Path in 2025
  3. Machine Learning 
  4. Learn Statistic
  5. Learn Data Visualization
  6. Data Analyst Interview Preparation Guide
Follow and Subscribe Our Channel
Write a comment